Wednesday, May 14, 2025

Rubedo Life Sciences’ Drug Discovery Platform, ALEMBIC™, Helps Identify Senescent or “Zombie” Neurons in New Study Linking Neuropathic Pain and Aging Published in Peer-Reviewed Scientific Journal Nature Neuroscience>

(BUSINESS WIRE)--Rubedo Life Sciences, Inc. (Rubedo), an AI-driven, clinical-stage biotech focused on discovering and rapidly developing selective cellular rejuvenation medicines targeting aging cells, today announced that using open source codes integrated in the company’s broader propriety drug discovery platform, ALEMBIC™, helped to identify senescent neurons in a new study that found senescent neurons drive chronic pain with injury and age.1 Senescent cells, often called “zombie” cells, arise as the results of cellular stress and damage. These senescent cells do not die but undergo cellular changes, including secreting pro-inflammatory factors, thereby potentially contributing to inflammatory responses within the body.1 The study, led by Stanford University scientists, Vivianne Tawfik, MD, PhD, and Lauren Donovan, PhD, and co-authored by Rubedo team members, including Chief Scientific Officer Marco Quarta, PhD, and Chief Technology Officer Alex Laslavic, was published in the May 14th edition of Nature Neuroscience, a prestigious, peer-reviewed scientific journal, and will be featured on the cover of the May issue. Dr. Quarta said, “We ...(BUSINESS WIRE)--Rubedo Life Sciences, Inc. (Rubedo), an AI-driven, clinical-stage biotech focused on discovering and rapidly developing selective cellular rejuvenation medicines targeting aging cells, today announced that using open source codes integrated in the company’s broader propriety drug discovery platform, ALEMBIC™, helped to identify senescent neurons in a new study that found senescent neurons drive chronic pain with injury and age.1 Senescent cells, often called “zombie” cells, arise as the results of cellular stress and damage. These senescent cells do not die but undergo cellular changes, including secreting pro-inflammatory factors, thereby potentially contributing to inflammatory responses within the body.1 The study, led by Stanford University scientists, Vivianne Tawfik, MD, PhD, and Lauren Donovan, PhD, and co-authored by Rubedo team members, including Chief Scientific Officer Marco Quarta, PhD, and Chief Technology Officer Alex Laslavic, was published in the May 14th edition of Nature Neuroscience, a prestigious, peer-reviewed scientific journal, and will be featured on the cover of the May issue. Dr. Quarta said, “We ...{}

No comments:

Post a Comment